Monday 10 November 2008

Distribution of the olfactory fibre input into the olfactory tubercle of the in vitro isolated guinea pig brain.

Related Articles

Distribution of the olfactory fibre input into the olfactory tubercle of the in vitro isolated guinea pig brain.


J Neurophysiol. 2008 Oct 15;


Authors: Carriero G, Uva L, Gnatkovsky V, de Curtis M


The olfactory tubercle (OT) is a cortical component of the olfactory system involved in reward mechanisms of drug abuse. This region covers an extensive part of the rostral ventral cerebrum and is relatively poorly investigated. The intrinsic network interactions evoked by olfactory input are here analysed in the OT of the in vitro isolated guinea pig brain by means of field potential analysis and optical imaging of voltage-sensitive signals. Stimulation of the lateral olfactory tract induces a monosynaptic response that progressively decreases in amplitude from lateral to medial. The monosynaptic input induces a disynaptic response that is proportionally larger in the medial portion of the OT. Direct stimulation of the piriform cortex and subsequent lesion of this pathway demonstrated the existence of a prominent associative projection from the anterior part of the piriform cortex to the lateral part of the OT. Optical and electrophysiological recordings of the signals evoked by stimulation of the olfactory tract during arterial perfusion with the voltage-sensitive dye di-2-ANEPEQ confirmed the pattern of distribution of the mono and disynaptic responses in the OT. Finally, current source density analysis of laminar profiles recorded with 16-channel silicon probes confirmed that the monosynaptic and disynaptic potentials localize in the most superficial and the deep portions of the plexiform layer I, as suggested by previous reports. This study sets the standard for further analysis of the modulation of network properties in this largely unexplored brain region.


PMID: 18922946 [PubMed - as supplied by publisher]

View Original Article

No comments: